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ABSTRACT

We present a catalog of 100,563 unresolved, UV-excess (UVX) quasar candidates to g ¼ 21 from 2099 deg2 of
the Sloan Digital Sky Survey (SDSS) Data Release One (DR1) imaging data. Existing spectra of 22,737 sources
reveals that 22,191 (97.6%) are quasars; accounting for the magnitude dependence of this efficiency, we esti-
mate that 95,502 (95.0%) of the objects in the catalog are quasars. Such a high efficiency is unprecedented in
broadband surveys of quasars. This ‘‘proof-of-concept’’ sample is designed to be maximally efficient, but still has
94.7% completeness to unresolved, g P19:5, UVX quasars from the DR1 quasar catalog. This efficient and
complete selection is the result of our application of a probability density type analysis to training sets that
describe the four-dimensional color distribution of stars and spectroscopically confirmed quasars in the SDSS.
Specifically, we use a nonparametric Bayesian classification, based on kernel density estimation, to parameterize
the color distribution of astronomical sources—allowing for fast and robust classification. We further supplement
the catalog by providing photometric redshifts and matches to FIRST/VLA, ROSAT, and USNO-B sources.
Future work needed to extend this selection algorithm to larger redshifts, fainter magnitudes, and resolved
sources is discussed. Finally, we examine some science applications of the catalog, particularly a tentative quasar
number counts distribution covering the largest range in magnitude (14:2 < g < 21:0) ever made within the
framework of a single quasar survey.

Subject headinggs: catalogs — quasars: general

Online material: machine-readable table

1. INTRODUCTION

Since the discovery of quasars (Schmidt 1963), ambitious
surveys (e.g., Schmidt & Green 1983; Foltz et al. 1987; Boyle
et al. 2000; York et al. 2000) have caused the number of
known quasars to rise from one to tens of thousands. Yet even
in this day of very large surveys and deep digital imaging, we
are still far from identifying the more than 1.6 million z < 3
quasars that are expected to fill the celestial sphere to g � 21.
The problem lies not in covering enough of the sky to faint

enough magnitudes, but rather in the efficient separation of
quasars from other astronomical sources. Current algorithms
are typically more than 60% efficient for UV-excess (UVX)
quasars to relatively bright magnitudes, but the selection ef-
ficiency drops toward fainter magnitudes where the photo-
metric errors are largest and most of the observable objects
reside. Further complicating the issue is the need to obtain
spectra for each candidate.14 Thus, surveys of quasars would
benefit considerably from algorithms with selection efficien-
cies that mitigate the need for confirming spectra. We describe
such an algorithm based on the photometric data of the Sloan
Digital Sky Survey (SDSS; York et al. 2000).

Optical surveys for quasars, including the SDSS, typically
rely on simple color cuts in two or more colors to select
objects that are likely to be quasars and to reject objects that
are unlikely to be quasars. The color selection part of the
SDSS’s quasar algorithm (Richards et al. 2002) is essentially
two, three-dimensional color selection algorithms. One branch
of the algorithm uses the ugri bands to identify UVX quasars,
the other uses the griz bands to identify z > 3 quasars.

Another way to select quasars from imaging data is to use
known quasars to determine what regions of color space qua-
sars occupy. Once these regions have been identified, spec-
troscopic quasar target selection involves simply observing
objects from those regions of color space that are most likely
to yield quasars (or perhaps least likely to yield significant
number of contaminants). At the beginning of the SDSS

14 X-ray to optical flux ratios may also suffice, but X-ray detections can
take just as long to obtain.
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survey, the construction of such an algorithm would have been
difficult given the lack of data, but with the current abundance
of SDSS imaging data and spectroscopic follow-up, it is now
possible to design such algorithms.

The approach used in this paper is based on the simple
philosophy that the most efficient and complete way to find
quasars is to target those regions of color space dominated by
quasars and/or that have sufficiently low rates of contamination
that we can afford to probe them for quasars. To accomplish
this goal, we take advantage of an existing statistical technique
known as kernel density estimation (KDE; Silverman 1986;
A. G. Gray et al. 2005, in preparation). By applying this tech-
nique to ‘‘training sets’’ of stars and quasars we can optimally
classify ‘‘test sets’’ of potential quasar candidates. Our algo-
rithm takes advantage of and goes well beyond the color-
characterization of small samples of quasars (e.g., Richards
et al. 2001a), to efficiently select quasars (or other objects for
that matter) from much larger samples of five-band SDSS im-
aging data. In fact, the algorithm is so efficient that the failure
rate is comparable to that of automated identification of quasar
spectra from the SDSS, and thus, for many science applica-
tions, spectroscopy is not needed. Furthermore, we capitalize on
the structure in the quasar color-redshift relation to compute
relatively accurate photometric redshifts (Richards et al. 2001b;
Budavári et al. 2001; Weinstein et al. 2004) for all the resulting
quasar candidates. The end product is a catalog of over 100,000
z < 3 quasar candidates with photometric redshifts that were
selected from the 2099 deg2 of SDSS DR1 imaging data.

In x 2 we describe our input data. Section 3 presents an
overview of the algorithm and the details of its application. In
x 4 we present the catalog and discuss its completeness and
efficiency along with matching to other catalogs and the
computation of photometric redshifts. Section 5 presents some
ideas for future improvement, and x 6 discusses some science
highlights.

2. THE SDSS DR1 IMAGING DATA

The imaging data that was used as the basis for our catalog
is contained in the SDSS First Data Release (DR1; Abazajian
et al. 2003). The SDSS is a project to map roughly 10,000 deg2

of sky in five photometric passbands (ugriz) using a large-
format CCD camera (Gunn et al. 1998). The characterization of
the photometric system is discussed by Fukugita et al. (1996),
Hogg et al. (2001), Smith et al. (2002), and Stoughton et al.
(2002). Unless otherwise stated, all magnitudes discussed
herein are ‘‘asinh’’ point spread function magnitudes (Lupton
et al. 1999) that have been dereddened according to Schlegel
et al. (1998). The astrometric accuracy of the survey (and thus
of the catalog presented herein) is better than 100 mas per
coordinate rms (Pier et al. 2003). Our work further makes use
of the spectroscopic follow-up of quasars; the selection algo-
rithm is described by Richards et al. (2002), the tiling algo-
rithm by Blanton et al. (2003), and the DR1 spectroscopic
quasar catalog by Schneider et al. (2003). In xx 3.2 and 3.3 we
describe the cuts that were applied to the imaging data to
construct our training and test sets.

3. NONPARAMETRIC BAYESIAN CLASSIFICATION

3.1. Ovvervview of the Alggorithm

The basic idea of our quasar selection algorithm is con-
ceptually as follows. We wish to classify a set of unlabeled
objects (the test set) as either stars or quasars. We first create
samples of ‘‘stars’’ and ‘‘quasars’’ that will serve as training

sets. For each object in our test set that we wish to classify, we
compute its probability of being a star and its probability of
being a quasar. The test object is assigned the label corre-
sponding to the higher probability.
The ‘‘probability of being a star’’ for an object x (repre-

sented by four color measurements) can be formalized as the
likelihood of x under the probability density function (pdf ),
which describes stars, i.e., p(xjC1), where C1, or class 1, is the
star class. This pdf could be represented, for example, as a
histogram. Because our measurement space consists of four
color dimensions, this would correspond to a four-dimensional
grid of counts. Instead, we will use a kernel density estimate
(KDE; Silverman 1986) of the pdf of stars. This mature sta-
tistical method is a powerful generalization of the concept of a
histogram, which yields a more accurate estimate of the true
underlying pdf. Instead of discrete bins whose locations are
defined by a grid, KDE defines each ‘‘bin’’ by its center point
and the extent of the bin by a continuous kernel function—for
example, a Gaussian function in four dimensions. We describe
KDE in more detail later in the paper. For an introduction to
density estimation, we refer the reader to Silverman (1986).
Once we have a way of estimating the likelihood of x being a

star (or quasar), or the value at x of the star pdf (or quasar pdf ),
we could simply choose the class corresponding to the higher
likelihood. However, we will incorporate one further piece of
information before determining the ‘‘probability of being a
star’’—the user’s prior belief that the object is a star, denoted
P(C1). This captures any and all subjective information that the
user may have outside of observing the actual training set—
namely here, the fraction of an unseen set of objects that the
user roughly expects to be stars. To incorporate this prior in-
formation with the likelihoods given by KDE, we use a simple
application of Bayes’s Rule (Bayes 1763; Press et al. 1992),
which weights each likelihood with its corresponding prior
probability to obtain the a posterior probability of being a star
or quasar:

P(C1jx) ¼
p(xjC1)P(C1)

p(xjC1)P(C1)þ p(xjC2)P(C2)
: ð1Þ

Specifically, in our context, objects with P(C1jx) > 0:5 are
classified as stars, while objects with P(C1jx) < 0:5 are clas-
sified as quasars. We refer to the resulting overall classifier as a
nonparametric Bayes classifier (NBC), for lack of a standard
name in the statistical literature.15

3.2. The Trainingg Sets

For the quasar training set, we simply used the four primary
SDSS colors (u� g, g� r, r � i, i� z) of the 16,713 quasars
from Schneider et al. (2003) without applying any additional
cuts based on luminosity, morphology, method of selection,
photometric errors, etc. These quasars span redshift and mag-
nitude ranges of 0:08 � z � 5:4 and 14:99 � i � 21:55.
For the stars training set, we used the four primary SDSS

colors extracted from a random sample of 10% of all point
sources16 in the DR1 imaging area with 14:5 < g < 21:0. We
rejected any objects that did not pass the photometric quality

15 This is sometimes also called kernel discriminant analysis or kernel
density classification.

16 We define point sources as those that have objc_type = 6 in the SDSS’s
photometric database. Morphologic classification accuracy is a function of
magnitude, being nearly perfect for g < 20, but only 90% accurate at our
g ¼ 21 limit.
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tests that the SDSS quasar algorithm applies before it does
color selection. Specifically, we rejected those objects that
failed the ‘‘fatal’’ or ‘‘nonfatal’’ error tests; see Richards et al.
(2002) for details. Finally, since we have included all point
sources—including quasars—in the stars training set, we have
also rejected any spectroscopically confirmed quasars and any
radio sources (which, for unresolved sources, are more likely
to be quasars than anything else). The total number of objects
in the initial stars training set was 478,144. The final stars
training set that we used to classify our objects went through
an additional ‘‘cleaning’’ pass described in x 3.7.

3.3. The Test Set

The goal of this paper is to present a ‘‘proof-of-concept’’
of the NBC approach to efficient selection of astronomical
objects. Thus, we start where quasar selection is admittedly
easiest. The test set for which we have determined star/quasar
classifications consists of SDSS-DR1 point sources with u�
g < 1:0, i.e., UVX sources that were selected from the Photo-
Primary DR1 database table. Currently, we exclude sources
that are resolved in the SDSS imaging data. We further restrict
the sample to those objects with observed g magnitudes fainter
than 14.5,17 dereddened g magnitudes brighter than 21.0, and
u-band errors less than 0.5 mag (i.e., are at least 2 � detections
in u). We use the g band instead of i since our selection is a
UVX one, meaning that our quasar candidates will generally
have z < 3 and little g-band Ly� forest absorption; this choice
also facilitates comparison with previous work such as the 2dF
QSO Redshift Survey (2QZ; Croom et al. 2004). As with the
stars training set above, we reject objects that fail the ‘‘fatal’’ or
‘‘nonfatal’’ error tests used by the official SDSS quasar selec-
tion algorithm (Richards et al. 2002). The full test set contains
831,600 objects.

3.4. Kernel Density Estimation

Once we have defined the training and test sets we can begin
the process of classification by computing the likelihood of
each object x in the test set with respect to each training set
(or equivalently, the density at x under the stars and under
the quasars), using the nonparametric (i.e., distribution-free)
kernel density estimator:

p̂(x) ¼ 1

N

XN

i

Kh(jjx� xijj); ð2Þ

where N is the number of data points, Kh(z) is called the kernel
function and satisfies

R1
�1 Kh(z)dz ¼ 1, h is a scaling factor

called the bandwidth, and z is the ‘‘distance’’ between a point
in the test set to a point in the training set (in our case, these
distances are four-dimensional Euclidean color differences,
jjx� xijj). In this work we mainly use a Gaussian kernel, where
the bandwidth corresponds to the variance of the Gaussian, i.e.,
Kh(jjx� xijj) ¼ 1=h

ffiffiffiffiffiffi
2�

p� �
exp� jjx� xijj2=2h2

� �
. To make

an analogy with a one-dimensional histogram (the simplest
kind of density estimator), the reader can think of a one-
dimensional histogram with a bin width of h as being a kernel
density estimator with Kh(z) ¼ constant and with the location
of the bins being fixed rather than being centered at the indi-
vidual data points.

Kernel density estimation is the most widely used and well-
studied method for nonparametric density estimation, owing
to both its simplicity and flexibility, and the many theorems
establishing its consistency for near-arbitrary unknown den-
sities and rates of convergence for its many variants. See
Silverman (1986) for more details regarding the concept of
kernel density estimation.

3.5. Fast Alggorithms

A naive algorithm for computing the kernel density estimate
at one point among N points requires N distance operations.
Computing the density estimate at N points among N points
thus scales as N 2. This is intractable for large data sets such as
ours. We use a fast computational algorithm based on space-
partitioning trees and principles similar to those used in N-body
solvers (Gray & Moore 2003). We will refer to this as the ‘‘fast
KDE’’ algorithm.

For the work in this paper a second, new algorithm was
developed, for the different computational problem of quickly
finding the higher posterior probability, i.e., finding the label
for each test point more quickly than by explicitly finding its
density under each of the two class training sets. A detailed
description of the modifications of the standard NBC algo-
rithm to make it faster are beyond the scope of this paper and
will be described in a future publication (A. G. Gray 2005, in
preparation). We will refer to this algorithm as ‘‘fast NBC.’’

The fast NBC algorithm need not estimate the density
completely for each object to be classified. The algorithm
need only maintain upper and lower bounds on the density for
each class; the code stops considering additional data when it
finds that the bounds no longer overlap. It is exact, i.e., com-
putes the classification labels as if the kernel density estimates
had been computed exactly. For additional speed we use an
Epanechnikov kernel for this step, which is Gaussian-like but
has finite rather than infinite extent. The resulting bandwidths
are then scaled appropriately to find the optimal bandwidth for
a true Gaussian kernel.18

3.6. Bandwidth Determination

The critical step in the KDE process is determining the
optimal ‘‘bandwidths’’ for kernel density estimation, i.e., the
bandwidth that spans the color space of each training set most
efficiently. This process is similar to that of deciding upon the
best bin size to represent data in a histogram; using too small
of a bin can cause artificial spikes in the histogram owing to
small number statistics, whereas using too large of a bin can
hide real information (Silverman 1986). There exist mature
algorithms for choosing the bandwidth for KDE that minimize
a statistical measure of the difference between the true un-
derlying pdf and the estimated pdf. Perhaps the most accepted
method for performing this is least-squares cross-validation
(Silverman 1986). Initially, we used this method to automat-
ically determine the optimal bandwidths for the two classes
separately. However, with a half million objects in the stars
training set, this method of computing the (optimal) band-
width was too computationally intensive. Furthermore, this
approach corresponds to NBC where the priors are equal, and
where the bandwidths for the stars and quasars are estimated
independently, based on a statistical criterion (leave-one-out,

18 For the Epanechnikov kernel, the bandwidth specifies its entire extent;
for the Gaussian kernel, it specifies 1 standard deviation—about 1/3 of the
entire coverage.

17 We use observed (i.e., not dereddened) magnitudes for the bright limit
since the purpose of this limit is to reject objects that may be saturated in the
imaging.
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cross-validated, least-squares error) for optimal density esti-
mation for each class.

Instead, we chose the bandwidth pair using a statistical
criterion for optimal classification accuracy (leave-one-out,
cross-validated accuracy, in this case). This has significant
advantages over the previous method. First, it considers the
bandwidths for both training sets simultaneously, as a pair,
rather than independently. Optimal bandwidth selection for
density estimation is known to be a difficult statistical prob-
lem. Estimating each bandwidth independently compounds
the problem that the true criterion of interest is the behavior
of both bandwidths in unison, in terms of the performance of
the resulting classifier; estimating parameters for a classifier is
known to be a statistically easier problem (e.g., in terms of
convergence rate).

Second, the density estimation approach is inherently more
computationally difficult. As noted above, the fast KDE al-
gorithm (Gray & Moore 2003) must inherently perform more
work than the fast NBC algorithm used here (A. G. Gray
2005, in preparation). Using the fast NBC algorithm allows
quick computation of the leave-one-out accuracy score for
each pair of bandwidths for our two training sets.

In the context of leave-one-out accuracy, one ideally
determines the bandwidths by maximizing the classification
accuracy of each training set simultaneously. However, in our
case, we fully expect the algorithm to misclassify some qua-
sars as stars. For example, a small fraction of quasars are
known to be dust reddened and are more likely than unred-
dened quasars to have colors more similar to stars. Similarly,
we are aware that the definition of our star training set is not
exclusive to stars. Thus, we chose to maximize the classifi-
cation accuracy after first accounting for reasonable expect-
ations for misclassification. The best resulting bandwidth was
0.15 mag for each of the training sets, which resulted in an
accuracy of 94.48% for the quasars and 97.91% for the stars.

3.7. Cleaningg the Stars Trainingg Set

Once we have bandwidths for each of our training sets, we
can simply apply them to our test set to classify our objects.
However, before final classification of our test set, we first
chose to clean the stars training set by running it through the
algorithm as a test set since our ‘‘stars’’ training set really
consists of objects that are known only to be point sources.
Therefore, we have removed from the stars training set any
objects that were classified by NBC as quasars. The final
‘‘cleaned’’ training set of stars contained 468,149 objects. This
process is admittedly somewhat circular but is appropriate for
the goal of this paper, which is to produce a sample that is as
efficient as possible, leaving improvements in completeness to
later work. After having thus cleaned the stars training set,
the same 0.15 mag bandwidths resulted in an accuracy within
the training sets of 95.86% for the quasars and 99.89% for the
stars.

3.8. Application to the Test Set vvia NBC

Once the two bandwidth parameters (from the quasars and
cleaned stars training sets) are finalized, we proceed with the
classification of the objects in the test set, by computing
P(C1jx) for each test object x. We use the Bayesian prior
P(C1) ¼ 0:88. This is based on the fraction of objects in our
test set that we believe are likely to be stars (88%) given pre-
vious testing of the algorithm. The NBC classification of our
831,600 UVX point source objects resulted in 113,674 (13.7%)

objects classified as quasars and 717,926 (86.3%) classified as
stars.
The color distribution of these 113,674 does indeed strongly

resemble that of the input quasar training set. However, it was
obvious that there was still a considerable amount of con-
tamination, primarily faint F stars, which have errors and met-
allicities that push them well into the usual quasar locus. Since
our current algorithm considers only the colors and not mag-
nitudes (see x 5), these objects are difficult to remove with the
NBC algorithm and a single prior.
Thus, the initial classification was supplemented by going

back and computing the full KDE star/quasar densities for
each of the 113,674 objects that were classified as quasars. In
this process we used a Gaussian rather than an Epanechnikov
kernel and bandwidths 1/3 the size of the above (see above),
which yields specific quasar/star densities for each object as
opposed to simple binary classification. This calculation is
now feasible since the number of objects under consideration
has been reduced from the original 831,600 to 113,674 and we
have already decided on a bandwidth to use.
The left panel of Figure 1 shows the log of the KDE-

computed quasar density versus star density for those objects
classified by the NBC algorithm as quasars. Objects classified
as stars (not shown) populate the upper left part of the dia-
gram. Also evident in this panel is an island of objects (upper
right) with similar quasar and star densities. Analysis of the
color distribution (Fig. 2) of these objects suggests that they
are stellar contaminants; they can be excised with a simple cut
on stellar density (Fig. 1, dashed line in left panel ). Thus, for
the final catalog, NBC-classified quasars were rejected if the
stellar density exceeded 0.01. The right panel of Figure 1 plots
the log of the ratio of the quasar density to star density. Larger
values indicate greater quasar probability. Objects classified as
stars by NBC, which would occupy the region beyond the left
extent of the plot, have already been removed. Plotted are both
those objects initially classified as quasars by the NBC algo-
rithm (dotted line) and those objects that also pass the stellar
density cut shown by the dashed line in the left-hand panel
(solid line). Our cut in stellar density is seen to remove objects
roughly starting at the minimum between the quasar and the
residual star distributions. The color distribution of the final
classification scheme is shown in Figure 2.

3.9. A Note Reggardingg Errors

The reader will notice in the above description that there is
no mention of the photometric errors of the objects; this is
because we do not use them explicitly. However, we do make
implicit use of the errors in the sense that they are ‘‘in the
model.’’ That is, when we ask what the relative quasar/star
likelihoods are for a given object, the answer automatically
takes into account the smearing of the color distribution in the
training sets owing to photometric errors.
If the magnitude (and thus error) distributions of the train-

ing sets were similar, this process is arguably an appropriate
manner in which to handle errors. That is because we are
asking how likely it is for an object to be scattered out of the
stellar locus, given the distribution of all stars (which includes
the photometric errors) rather than asking whether an object
could conceivably be ‘‘pushed back’’ onto the stellar locus
given the individual errors of the object. There is a difference
between the two since a quasar that is much redder than the
stellar locus (in u� g) is necessarily much fainter in u than a
star on the stellar locus with the same g� r color but a bluer
u� g color. That is, it is much more likely that including the
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errors of a quasar will cause it to be consistent with the stellar
locus than it is for the errors of a star in the locus to move it
out to the location of a quasar with the same g� r color; see
Richards et al. (2002) for further discussion of this issue as it
affects the SDSS’s selection of quasars.

This method of error handling clearly ignores the fact that
the errors are a function of magnitude and the fact that our
quasar training set has fewer faint objects relative to the stars
training set.19 As we try to push our selection method to
fainter magnitudes, accounting for the magnitude dependence
of the errors will become important (x 5), but for our current
limit of g ¼ 21, the typical error on the u� g color at the faint
limit is only �0.1 mag, which is not enough to adversely
affect our selection method especially since the bandwidth is
0.15 mag. In the future we hope to perform a weighted KDE
analysis, which will allow one to attach a weight (such as the
inverse variance) to every point.

4. THE QUASAR CATALOG

After application of the NBC algorithm to identify quasars
and further cleaning of this sample by rejecting objects with
large KDE stellar probabilities, we are left with 100,563 qua-
sar candidates that define this catalog.20 These next sections
describe the completeness and efficiency of the catalog along
with matching to other catalogs. Table 1 is the catalog itself.
Table 2 provides a description of each column in the machine-

readable Table 1.21 Figure 3 shows the g magnitude distribu-
tion of all sources in the catalog, while Figure 4 shows the
distribution of sources on the sky.

4.1. Completeness

The completeness of the sample is difficult to quantify since
our selection extends to both brighter and fainter magnitudes
than either of the SDSS and 2dF (Croom et al. 2004) quasar
surveys. However, it is easy to ask what fraction of SDSS-
DR1 quasars are recovered that should be recovered.

Of the 16,713 SDSS-DR1 quasars in the Schneider et al.
(2003) catalog, 14,592 meet our magnitude, error, and color
selection cuts. Among those 14,592, 13,574 are actually in the
test set that formed the basis for our catalog. Most of the 1018
‘‘missing’’ objects result from the fact that we are using only
that imaging area that formally belongs to the DR1 release,
whereas the Schneider et al. (2003) catalog included all qua-
sars found within any ‘‘stripe’’ that was part of the DR1 re-
lease.22 Other objects are missing because of changes to the
object parameters that result from using slightly different
versions of the data processing pipelines. Among those 13,574
SDSS-DR1 quasars that the NBC algorithm could have re-
covered, it actually recovered 12,856 or 94.7%. We expect
roughly 5% additional incompleteness as a result of our fil-
tering of objects via their photometric flags (e.g., those with
‘‘fatal’’ errors); see Vanden Berk et al. (2004) for further
discussion of the completeness of the SDSS quasar survey.

However, we caution that this completeness is only with
respect to the reasonably bright quasars in the Schneider et al.

Fig. 1.—Left: Log of the KDE quasar vs. star density. Larger values indicate greater likelihood of class membership. The lack of objects in the upper left is a
result of the NBC classification that was used to perform the initial rejection of objects classified as stars. The dashed line shows the additional cut that was used to
reject stellar contaminants from the NBC-classified quasars. Right: The distribution of the logarithm of the quasar density divided by the star density. Larger values
indicate greater probability of membership in the quasar class. All NBC-classified quasars are given by the dotted line and quasars meeting the additional cut on
stellar density (dashed line in left panel ) are given by the solid line.

19 Though the quasar training set, being based on the Schneider et al.
(2003) SDSS-DR1 quasar catalog, does contain z < 2:2 objects as faint as
g ¼ 22.

20 The catalog excludes 17 objects (from run 2206) that were originally in
the test set but were found to be duplicate objects resulting from a problem
resolving the overlap of two (misaligned) strips of data. This problem is now
fixed in the database. In addition to the removal of these duplicate objects,
fixing this database problem revealed 125 additional UVX objects (all from
run 2206) that were not included in the test set from which we selected our
quasar candidates.

21 The catalog is also available at http://sdss.ncsa.uiuc.edu/qso/nbckde/,
where updates will be posted.

22 An object in a scan that lies along the boundary of the area observed at
the time of a data release may be considered as the ‘‘secondary’’ observation
even if the ‘‘primary’’ observation (from the adjacent, overlapping scan) does
not yet exist. This is because such classification of multiple observations is
predetermined based on the geometry of the scans.
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(2003) catalog and that we fully expect that (1) the catalog
will be more incomplete with fainter magnitudes and that
(2) the incompleteness of the whole catalog will be also be a
function of redshift and color. In particular, the fact that we do
not include magnitude as an explicit parameter in our selection
algorithm (other than limiting the magnitude ranges), and the
fact that the colors of stars appear to be a stronger function of
magnitude than the colors of quasars, means that there are

regions of color space where we are likely to be more in-
complete as a result of our desire to be as efficient as possible.
Utilization of the magnitudes (see x 5) in future applications
of the algorithm should improve the completeness in such
regions.
We have additionally tested the completeness of the algo-

rithm using simulations. Application of the algorithm to sim-
ulated quasar colors constructed similarly to those of Fan

Fig. 2.—Color-color distribution of the 831,600 initial unresolved UVX sources. Blue dots and contours are those objects classified as stars. Black dots and
contours are objects classified as quasars. Red dots and contours are objects initially classified as quasars but were rejected by our cut on the stellar density. Contours
are a fraction of the peak in each class.

TABLE 1

NBC Quasar Candidate Catalog

Number

(1)

Name

(SDSS J)

(2)

R.A.

(deg)

(3)

Decl.

(deg)

(4)

Obj. ID

(5)

Row

(6)

Col.

(7)

u

(8)

g
(9)

r

(10)

i

(11)

z

(12)

1................. 000001.88�094652.1 0.0078478 �9.7811413 1-1729-21-4-83-116 370.57 1729.17 19.781 19.530 19.335 19.401 19.407

2................. 000002.21�094956.0 0.0092176 �9.8322327 1-1729-21-4-83-118 389.98 1264.98 20.396 20.281 20.296 20.209 20.152

3................. 000006.53+003055.2 0.0272316 0.5153435 1-3325-20-5-108-117 656.47 978.59 20.405 20.459 20.336 20.100 20.076

4................. 000007.58+002943.3 0.0316062 0.4953686 1-3325-20-5-108-131 696.30 797.03 21.085 20.440 20.471 20.336 19.958

5................. 000008.13+001634.6 0.0339044 0.2762998 1-2662-20-4-283-149 253.50 673.27 20.240 20.201 19.949 19.498 19.194

Notes.—Table 1 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown here for guidance regarding its
form and content. The machine-readable version contains additional columns.
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(1999) reveal that the algorithm is generally at least 95%
complete between z ¼ 0:2 and z ¼ 2:0. Some additional de-
gree of incompleteness occurs at z ¼ 0:4 to z ¼ 0:8 for the
reddest quasars as a result of our restriction to objects with low
stellar likelihood (see x 3.8). On the other hand, the bluest
quasars have a 95% completeness limit that extends to z � 2:4.
At higher redshift, the completeness drops rapidly and is
difficult to characterize because of the complexity of accu-
rately simulating quasar spectra blueward of Ly� emission;
furthermore, we have restricted this catalog to UVX (u� g <
1:0) sources.

4.2. Efficiency

To estimate the efficiency of the catalog, we have matched it
to three spectroscopic databases. First the SDSS-DR1 quasar
catalog (Schneider et al. 2003), which includes only bona fide
quasars; these are objects that constituted part of the quasar
training set and are labeled with ID ‘‘DR1QSO’’ in the catalog.
Next we match to the 2QZ NGP catalog (Croom et al. 2004);
these objects are labeled with ID ‘‘2QZ’’ in the catalog and
include quasars as well as nonquasars. We also extracted all
‘‘good’’23 spectroscopic IDs from the SDSS-DR2 (Abazajian
et al. 2004) database and matched them to our quasar candidate

TABLE 2

NBC Quasar Candidate Catalog Format

Column Format Description

1................... I6 Unique catalog number

2................... A18 Name: SDSS Jhhmmss.ss+ddmmss.s (J2000.0)

3................... F11.7 Right ascension in decimal degrees (J2000.0)

4................... F11.7 Declination in decimal degrees (J2000.0)

5................... A21 SDSS Object ID string: skyVersion-run-rerun-camcol-field-id

6................... F7.2 Row position of object in field (pixel)

7................... F7.2 Column position of object in field (pixel)

8................... F7.3 PSF u asinh magnitude (uncorrected for Galactic extinction)

9................... F6.3 PSF g asinh magnitude (uncorrected for Galactic extinction)

10................. F6.3 PSF r asinh magnitude (uncorrected for Galactic extinction)

11................. F6.3 PSF i asinh magnitude (uncorrected for Galactic extinction)

12................. F6.3 PSF z asinh magnitude (uncorrected for Galactic extinction)

13................. F6.3 Error in PSF u asinh magnitude

14................. F5.3 Error in PSF g asinh magnitude

15................. F5.3 Error in PSF r asinh magnitude

16................. F5.3 Error in PSF i asinh magnitude

17................. F5.3 Error in PSF z asinh magnitude

18................. F6.3 Galactic extinction (mag) in u

19................. F5.3 Galactic extinction (mag) in g
20................. F5.3 Galactic extinction (mag) in r

21................. F5.3 Galactic extinction (mag) in i

22................. F5.3 Galactic extinction (mag) in z

23................. E11.4 KDE quasar density

24................. E10.4 KDE star density

25................. F6.3 Photometric redshift

26................. F4.2 Lower limit of photometric redshift range

27................. F4.2 Upper limit of photometric redshift range

28................. F5.3 Photometric redshift range probability

29................. A13 Previous catalog object classification

30................. F6.3 Previous catalog object redshift

31................. F9.3 20 cm flux density (mJy) (�1 for not detected or not covered)

32................. F6.3 log RASS full-band count rate (9 for not detected or not covered)

33................. F6.2 Proper motion (mas yr�1) (�1 indicates unknown proper motion)

Fig. 3.—g magnitude distribution of the 100,563 objects in the catalog. The
bin size is 0.2 mag. Error bars are 1 � Poisson errors.

23 Specifically, using a database query on the ‘‘SpecPhoto’’ database with
‘‘(zConf > 0.95 AND specClass in (1, 2, 3, 4, 6) AND zStatus in (3, 4, 6, 7, 9,
11, 12).’’
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catalog. These ‘‘DR2’’ objects are so labeled and include
quasars as well as nonquasars. They are not meant to be a
complete sample of all DR2 identifications, just those that with
identifications that we can be reasonably certain are correct
without having to look at the spectra by eye. Users desiring a
more complete sample may wish to perform a less restrictive
matching.

Matching to these three catalogs was done in series in the
order given, such that an object will only match the first oc-
currence. For example, any object that matched a SDSS-DR1
quasar was not allowed to match any other catalog. In the
future, matching against the faint quasars found in the recently
combined SDSS/2dF quasar survey (whose goal is to discover
10,000 quasars to g ¼ 21:85 using SDSS imaging and the 2dF
spectrograph; publication in preparation) will allow for better
characterization of the faint end of the sample.

In all there were 22,737 matches to spectroscopically con-
firmed objects. A total of 22,191, or 97.6%, were confirmed to
be quasars; Figure 5 shows the distribution of spectroscopic
redshifts (solid line) along with the redshift distribution of
rediscovered 2QZ quasars (dashed line; Croom et al. 2004).
Note that some redshifts are intrinsically harder for the SDSS’s
automatic spectroscopic identification program to handle. Our
restriction to the most secure identifications when matching

to the DR2 database causes a loss of quasars at certain red-
shifts (e.g., z � 0:9, 1.4, and 2.0), which is plainly evident in
Figure 5. The distribution of photometric redshifts (x 4.3) for
all of the confirmed quasars is given by the dotted line in
Figure 5.
The majority of the nonquasars appear to be relatively cool

white dwarfs (see x 4.4.3 below). Figure 6 shows the efficiency
as a function of g magnitude for the above 22,737 spectro-
scopic identifications. Comparison with Figure 3 reveals that
the brightest magnitudes have very few objects in each bin—
making these fractions less reliable, as indicated by the error
bars in Figure 6. Applying the fractions as a function of mag-
nitude to the overall magnitude distribution of the catalog, we
expect that the overall efficiency of the catalog will be roughly
95.0%, yielding 95,502 quasars in all.
It is difficult to extrapolate the efficiency for these confirmed

objects to the entire sample since the selection algorithms of
the three catalogs to which we matched are obviously different
from that herein and we might, for example, be preferentially
lacking spectra of nonquasars. However, the color distribution
of those objects with matches appears to span the space oc-
cupied by the catalog as a whole. Thus, we fully expect the
catalog to be more than 90% efficient. In addition, some objects
that were spectroscopically confirmed as galaxies or narrow
emission line galaxies (NELGs) may indeed prove to be active
galactic nuclei (AGNs) upon close examination. Similarly,
close inspection may reveal that some of the objects with cool
white dwarf colors are actually BL Lac objects.
Contrasting with our estimated 95% efficiency is that which

would be achieved by making a simple color cut. For example,
the UVX color cut used by Schmidt & Green (1983) corre-
sponds roughly to u� g < 0:6 in the SDSS photometric sys-
tem. There are 97,035 objects with u� g < 0:6 in the NBC
catalog, whereas the input to our algorithm contains 139,161
such objects. If we make the extreme assumption that 95%
of the UVX objects in our catalog are indeed quasars and that
the excess in the input catalog consists of only contaminants,
then this color cut would yield an efficiency (quasars : quasar

Fig. 4.—Spatial distribution of quasar candidates in an Aitoff projection.
For the sake of clarity, only one in every 10 candidates is shown.

Fig. 5.—Distribution of spectroscopic redshifts for confirmed quasars in the
sample (solid line) and 2QZ quasars in the sample (dashed line). The dotted
line shows the photometric redshift distribution of the spectroscopically
confirmed quasars.

Fig. 6.—Efficiency of the target selection as a function of g magnitude for
22,743 spectroscopically confirmed objects. Error bars are 1 � Poisson errors.
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candidates) of only 66.2%. This example gives a lower limit
to the efficiency that one can expect for a reasonably complete
sample of UVX quasars; further color cuts could obviously be
used to improve this efficiency.

4.3. Photometric Redshifts

For each object in the catalog, we also report photometric
redshifts that were determined via the method described in
Weinstein et al. (2004). This algorithm minimizes the differ-
ence between the measured colors of each object and the
median colors of quasars as a function of redshift.

We used the colors of UVX, u-detected DR1, point-source
quasars with spectroscopic redshifts as our color-redshift
template, but using the entire DR1 quasar catalog produces
similar results. For each object we list the most likely pho-
tometric redshift,24 a redshift range, and the probability that
the redshift is within that range; see Weinstein et al. (2004) for
more details.

The left panel of Figure 7 shows the spectroscopic versus
photometric redshifts of the 22,191 confirmed quasars in the
catalog, revealing those redshifts where the algorithm has the
largest error rate (either because of degeneracy between distinct
redshifts or smearing of nearby redshifts). However, one can
see from the highly zero-peaked distribution in the right panel
that, overall, the quasar photo-z algorithm performs quite well,
with 19,086 (86.0%) of the redshifts being correct to within
�0.3 and 14,371 (64.8%) to within �0.1. Figure 8 shows the
accuracy of the photometric redshifts as a function of redshift
(both spectroscopic and photometric, left panel ) and g mag-
nitude (right panel ) for �z � 0:3 and �z � 0:1.

The photo-z code also gives a probability of an object being
in a given redshift range (where the size of that range can vary
considerably). Figure 9 plots the estimated probability of the
photometric redshift being in the given range versus the actual
fraction of those objects with accurate photometric redshifts—

demonstrating that these probabilities are accurate in the en-
semble average. Judicious use of the predicted redshifts, the
range given, and the probability of the object having a redshift
in that range allows these photometric redshift estimates to be
very useful for a number of science applications.

4.4. Matchingg to Other Cataloggs

Although the estimated efficiency of the algorithm that pro-
duces our catalog is already quite high, it is possible to make use
of other data to improve our efficiency. For example, objects
that match to radio and/or X-ray sources are that much more
likely to be quasars, while objects with large proper motions
are less likely to be quasars. Thus, included in the catalog are
matches to radio, X-ray, and proper-motion catalogs as dis-
cussed below. These matches are primarily for the purpose of
assessing the quasar likelihood of these objects; the user should
refer to the original catalogs for further information.

4.4.1. FIRST and Spitzer-FLS VLA

We have matched the entire catalog to the FIRST (Becker
et al. 1995) VLA 20 cm catalog. Objects within 1B5 are con-
sidered a match—the same radius used for the SDSS’s target
selection algorithm. Column (31) of Table 1 indicates the peak
20 cm flux densities (in mJy) for those quasars with FIRST
matches. Entries of ‘‘�1’’ indicate no radio detection (or no
coverage of that position).

In addition, quasar candidates within the Spitzer First Look
Survey25 area have been matched to the deep 20 cm VLA
catalog of Condon et al. (2003), which goes approximately
10 times deeper than FIRST in this region of sky. Those
objects in the catalog that match to an object in the Condon
et al. (2003) catalog within 1B5 have their integrated 20 cm
fluxes tabulated in column (31) of Table 1. Objects that match
both radio catalogs have only their FIRST data reported (as
discerned by their k1 mJy flux densities).

Fig. 7.—Left: Spectroscopic vs. photometric redshifts. Right: Histogram of the difference between spectroscopic and photometric redshifts.

25 See http://ssc.spitzer.caltech.edu/fls/.

24 The precision on the photometric redshifts is not reflective of the actual
accuracy, it is merely an artifact of our choice of quantized bin centers.
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In all we catalog 2533 radio detections. The apparent low
fraction of radio-detected sources should not be taken as an
indication that the fraction of quasars that are radio loud is
lower than the nominal 8%–10% (e.g., Ivezić et al. 2002).
Rather, it reflects the fact that the catalog is going much
deeper in optical than FIRST does in the radio.

4.4.2. ROSAT

We have cross-correlated the positions of the quasar candi-
dates with the X-ray sources listed in the Bright and Faint

Source catalogs of the ROSAT All-Sky Survey (RASS; Voges
et al. 1999, 2000). Positional accuracies for RASS X-ray
sources vary with count rate but typically have an uncertainty
of �1000–3000. Among the SDSS quasar candidates presented
here, there are 1304 cases whose optical positions fall within
3000 of a RASS X-ray source; for these sources column (32) of
Table 1 gives the log of the broadband (0.1–2.4 keV) count
rate (counts s�1) corrected for vignetting. A ‘‘9’’ in column (32)
indicates no X-ray detection. Since the surface density of our
quasar candidates is about 45.5 deg�2 and since there are about
7000 RASS X-ray sources within the SDSS DR1 imaging re-
gion, the expected number of SDSS quasar candidates super-
posed on unrelated RASS 3000 radius X-ray error circles is
about 69, i.e., about 5% of the 1304 likely SDSS/RASS po-
sitional matches we tabulate here. There are 15 cases in which
two SDSS quasar candidates fall within the same 3000 radius
RASS error circle, making their association with the X-ray
source especially ambiguous; the catalog numbers of these am-
biguous candidates are 769/772, 46119/46120, 49117/49123,
50252/50253, 50751/50756, 51095/51096, 70101/70105,
76539/76540, 79692/79701, 81782/81783, 85386/85387,
86170/86171, 92237/92240, 93927/93934, and 99321/99322.

4.4.3. USNO-B Proper Motion

Objects with large proper motions are more likely to be
stars than quasars. We have matched the quasar candidates to
the improved USNO-B+SDSS proper motions tabulated by
Munn et al. (2004), which is 90% complete to g � 19:7. We
chose to restrict ourselves to the most reliable proper motions,
and thus require (1) a one-to-one match between the SDSS
and USNO-B catalogs, (2) that the proper-motion rms fit re-
sidual be less than 550 mas in both right ascension and dec-
lination, (3) that the SDSS object be detected in at least four
epochs, and (4) that the nearest neighbor (to g < 22) be more
than 1000 away (to avoid blended objects on the Schmidt plates
from which USNO-B was created, which could lead to false
high proper motions).

Fig. 9.—Actual fraction with correct redshift as a function of the quoted
probability that the redshift is correct (solid line: �z � 0:3; dashed line:
�z � 0:1).

Fig. 8.—Left: Fraction of correct photometric redshifts as a function of spectroscopic redshift , zspec, as a function of redshift (solid line: �z � 0:3, error bars are
1 � Poisson errors; dashed line: �z � 0:1). The dotted line shows the fraction of correct photometric redshifts as a function of photometric redshift, zphot , for
�z � 0:3. Right: Fraction of correct photometric redshifts as a function of g ; error bars are 1 � Poisson errors.
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This matching results in 41,241 ‘‘reliable’’ proper-motion
measurements. Since quasars will have measured ‘‘proper
motions’’ comparable to the typical errors in the proper
motions, we need to impose a limit on the proper motion to
identify objects that are most likely to be stars. We find that
99.5% of spectroscopically confirmed quasars in our sample
have proper motions less than 20 mas yr�1. There are 799 ob-
jects with proper motions �20 mas yr�1 in the catalog, most
of which are likely to be stars.

In Figure 10 we show the color distribution of the con-
firmed quasars (black) and confirmed nonquasars or large
proper-motion objects (red ). Most of the nonquasars are cool
white dwarfs with colors very similar to real quasars and are
thus difficult to exclude. Those desiring the most efficient
samples possible may wish to exclude this color region (es-
pecially for bright objects). Note, however, that the contours
are given as a fraction of the peak in each category and the
overall level of contamination is small.

5. FUTURE WORK

Although the selection algorithm from which this quasar
catalog was derived is very efficient and complete with respect
to unresolved UVX quasars, we can envision modifications
that would improve the algorithm—especially with regard to
high-redshift and extended quasars.

We currently limit the test set for this catalog to UVX-
selected objects in part because of a lack of a sufficiently large
number of high-z quasars from which to train the algorithm.
That is, since the density of z > 3 DR1 quasars is small, the
algorithm would tend to identify any such objects as stars.
However, we are hopeful that in the future we can use simu-
lated quasars as the quasar training set, which will overcome
the relative underdensity of high-z objects and should allow
for efficient selection of quasars to z � 5:8 with the NBC
method.

In addition, we currently exclude extended sources even
though they may be AGNs since their extended morphology
necessarily means that the host galaxy is contributing a sig-
nificant amount of light to the object’s colors. We hope to

include such objects in the future by explicitly including an
extended quasar and normal galaxy training sets. Furthermore,
we intend to use a Bayesian star/galaxy classification algorithm
(Scranton et al. 2002) for future catalogs in order to reduce the
fraction of objects that have misclassified morphologies.

Another improvement that could be made is to push the
selection to fainter limits. The SDSS imaging data have a 95%
completeness detection limit of 22.2 in the g band, which
means that it should be possible to extend our sample to mag-
nitudes fainter than g ¼ 21.

Similarly, we might make better use of the magnitudes in
the selection algorithm itself. Currently, our algorithm makes
use of only the four unique colors that can be derived from the
five SDSS magnitudes. Since errors and metallicity make the
width and location of the stellar locus a function of magnitude,
one would like to include a magnitude in the selection algo-
rithm. Doing so is a complicated matter since magnitudes and
colors are not distributed similarly and thus have different
‘‘metrics.’’ However, a possible solution for the future is to
use the algorithm on the five SDSS magnitudes rather than the
four SDSS colors.

Our efficiency would also be improved if we were able to
include properties such as radio and X-ray detections and lack
of proper motion into our algorithm rather than making use of
that information after the fact.

Finally, since the density of stars is clearly a function of
Galactic position, it would be reasonable to make use of this
information in the classification of quasars. One possibility is
to make the stellar prior a function of Galactic coordinate.

6. SCIENCE

Here we highlight some of the science applications for
which we envision the catalog being used. The most obvious
of those is the study of the magnitude distribution of quasars,
i.e., their number counts.

Since (1) the efficiency of our algorithm is so high, (2) the
selection yields a redshift distribution similar to that of the
2QZ survey (Croom et al. 2004), and (3) g and BJ are roughly
equivalent, we can quite easily compare the number counts

Fig. 10.—Color distribution of confirmed quasars (black) and confirmed nonquasars (mostly white dwarfs) or large proper-motion objects (red ). Note the small
region of parameter space occupied by residual white dwarfs. However, their inclusion does not significantly affect the distribution of quasar candidates and thus are
a small contaminant overall (the contours are given as a fraction of the peak in each class).
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distribution of our quasar candidates with that of the 2QZ/6QZ
catalog. Such a comparison is shown in Figure 11 and shows
remarkable agreement, confirming that the number counts roll
over at the faint end and are better fitted by a double power
law than a single power law (though we prefer not to use the
term ‘‘break’’ to describe this behavior).

Further work is needed to properly compare the number
counts of quasars from this catalog with the 2QZ sample and
to compute the luminosity function. Currently, the incom-
pleteness of the catalog and the contamination of nonquasars
are similar in fraction and fortuitously cancel, possibly making
the comparison in Figure 11 look better than it really is. How-
ever, even accounting for this, the agreement of the raw cat-
alog to previous work is a testament to the completeness and
efficiency of our method.

In addition to the number counts of quasars, there exists an
abundance of other science that can be done with this catalog.
For example, the SDSS quasar selection algorithm is forced to
reject the brightest quasars (typically i ¼ 15, but as faint as
i ¼ 16:5 in the early data) to avoid cross-talk between the
spectroscopic fibers. As a result there are 22 bright quasar
candidates in the catalog without matches to our catalogs of
known objects; 13 of these are unknown to NED26 (objects
2047, 5398, 16881, 20333, 23715, 46200, 50830, 83155,
93643, 95179, 95336, 95341, and 97262). Spectroscopy of
three of these objects with the ARC 3.5 m telescope at Apache
Point Observatory shows that objects 46200 and 50830 are

not quasars, while object 83155 is a z ¼ 0:039 AGN. Based
on their colors, objects 2047, 5398, and 95341 are the mostly
likely AGN candidates among the remaining 10 unknown
objects.
An obvious application of this catalog is to find wide-

separation (�k 200) gravitational lens candidates that are
clearly resolved in ground-based data. Not only is it possible to
find pairs of close quasars, but it is also possible to determine
the likely similarity of their redshifts. J. F. Hennawi et al. (2005,
in preparation) discuss such a search. Preliminary application
of our algorithm to post-DR1 successfully recovers (with ‘‘cor-
rect’’ redshifts) three of the four components of the quadruple
lens, SDSS J1004+4112 (the fourth component appears to be
dust reddened; Inada et al. 2003) and also both components of
Q 0957+561 (Walsh et al. 1979), again with redshifts accurate
to within the errors.
One can also use the catalog to measure the amplification

bias of quasars. That is, to what extent are quasars magnified
(but not split into multiple images) by foreground galaxies?
Such studies require cross-correlation of the largest possible
samples of foreground galaxies and background quasars. The
efficiency of the algorithm is sufficient for such applications.
Furthermore, since we give the probability of the photometric
redshifts in addition to the most likely value, it is possible to
exclude quasars that may not be background sources to sam-
ples of foreground SDSS galaxies.
Finally, we emphasize that the expected density of UVX

quasars in this catalog (45.5 deg�2) is substantially larger than
the density of 6.95 deg�2 for similar objects from Schneider
et al. (2003), so this sample will be very powerful for inves-
tigations of quasar-quasar and quasar-galaxy clustering.
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Budavári, T., et al. 2001, AJ, 122, 1163
Condon, J. J., Cotton, W. D., Yin, Q. F., Shupe, D. L., Storrie-Lombardi, L. J.,
Helou, G., Soifer, B. T., & Werner, M. W. 2003, AJ, 125, 2411

Croom, S. M., Smith, R. J., Boyle, B. J., Shanks, T., Miller, L., Outram, P. J., &
Loaring, N. S. 2004, MNRAS, 349, 1397

Fan, X. 1999, AJ, 117, 2528
Foltz, C. B., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A.,
Weymann, R. J., & Anderson, S. F. 1987, AJ, 94, 1423

Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider,
D. P. 1996, AJ, 111, 1748

Gray, A. G., & Moore, A. W. 2003, in Proceedings of the Third SIAM Inter-
national Conference on Data Mining, ed. Daniel Barbara & Chandrika
Kamath (San Francisco: SIAM), http://www.siam.org/meetings/sdm03/
proceedings/sdm03_19.pdf

Gunn, J. E., et al. 1998, AJ, 116, 3040
Hogg, D.W., Finkbeiner, D. P., Schlegel, D. J., &Gunn, J. E. 2001,AJ, 122, 2129
Inada, N., et al. 2003, Nature, 426, 810
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